
Int. J. Solids Structures, 1970, Vol. 6, pp. 1267 to 1275. Pergamon Press. Printed in Great Britain

THE USE OF STRAIN GRADIENT THEORY FOR ANALYSIS OF
RANDOM MEDIA

M. J. BERAN

Towne School, University of Pennsylvania

and

J. J. McCoY

Department of Civil Engineering and Mechanics, the Catholic University of America

Abstract-In this paper we consider the equations governing the response to a forcing field ofan infinite statistically
homogeneous medium with small fluctuations in the constants of elasticity. These equations were previously
derived by Beran and McCoy (1). The solution is obtained for the problem of a point force in an infinite medium
and an analysis is presented to determine the ability of first strain gradient theory to approximate this solution.
It is shown that a valid approximation can be obtained for the "slowly" varying (in space) portion of the solution
only if the square of the lengths introduced in gradient theory for an isotropic centrosymmetric material are
negative. This requirement violates the requirement that the strain energy density of the gradient theory be
positive definite. Further consequences of choosing these lengths to be imaginary are considered. The value of
going to higher order gradient theories is also discussed.

INTRODUCTION

IN A recent paper, Beran and McCoy [IJ, showed that the equations governing an
ensemble of infinite random media are

(1)

Here cij' eij' Ui are the stress, strain and displacement fields, respectively. F j is a non­
random forcing field. The braces indicate an ensemble average. C ijkl is the elastic moduli
tensor. T?is function is taken to be a random function of position. Dijklx t ) and E/jkl(x, XI)

are functIOns determined by the statistical properties of C/jkl and the free space Green's
function of the non statistical problem.

When the fluctuations in C;jkl are small compared to the mean values {Cijkl }, then
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D;jkl(X) and Eijkl(X, Xl) may be evaluated explicitly. This has been done for the case of a
locally isotropic media; i.e.

(2)

where A(X) and Il(x) are statistically homogeneous and isotropic random functions of
position. The results, which are given by equations (30) and (31) in Ref. [IJ, are too lengthy
to warrant reproducing them here.

Further in Ref. [IJ, it was argued that for those problems in which it is possible to
identify two widely different length scales, it is permissible to invoke an ergodic hypothesis
equating an ensemble average to a volume average. The two length scales are defined
according to the following: On one scale it is possible to discern details of the variations
of A(X) and Il(x). On this scale (the inner scale) the overall dimensions of the solid and any
characteristic length associated with the forcing of the solid appear to be infinitely large.
One the second scale (the outer scale) one can make measurements ofthe overall dimensions
of the body and of characteristic lengths associated with the forcing function. On this
scale the fluctuations in the material properties with position in space are too rapid to be
discernable. Assuming that the two scales are present then an ergodic hypothesis allows
one to equate the ensemble average to a volume average. The volume average is taken over
a region that appears very small when viewed from the outer scale. Thus, one can infer
from the statistical averages, information of the response of the individual solids that
comprise the statistical sample. In the paper we consider only those problems in which the
necessary conditions are present and interpret the braced quantities as denoting local
volume averages.

The formulation given by equation (1) is not a unique one. Several investigators,
including Kroner [2,3J, Krumhansl [4J and Kunin [5J, interested in bridging the gap
between the mass point approach to the mechanical behavior of solids and the continuum
approach, have either begun with or arrived at the same formulation. The goal in these
latter investigations was to develop a "non-local" elasticity theory; i.e. one which takes
into account the finite range of the cohesive forces. The guiding light in these developments
is crystal lattice theory. Thus, while the formulations are the same, the class of problems
to which they are applicable are different.

The close relationship between the formulation expressed in equation (I) and the
multipolar elasticity theory of the first kind proposed by Green and Rivlin [6J is readily
apparent. The point of contact with the latter theory is achieved by expanding the strain
tensor, {t:kl(X 1)}, as it appears in the constitutive equation of (1), as a power series about
the point X and then carrying out the integration over Xl space. The result is a constitutive
equation which relates the stress with the displacement gradients of all orders. Application
of the Green and Rivlin theory requires our being able to truncate the series appearing
in the constitutive equations after a relatively few terms. The result of such a set of trunca­
tions may be identified with a set of phenomenological theories, starting with the classical
elasticity theory, then the first strain gradient theory of Toupin [7J, the second strain
gradient theory of Mindlin [8J, etc. It is to be hoped that these theories of ever increasing
complexity represent models of some problem with greater and greater fidelity. It is the
purpose of the present paper to give some insight into this question for the class of problems
which may be handled "exactly" by the formulation given by equations (1). This will be
done by considering the response of an infinite solid to a concentrated force both within
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(5)

the framework ofthe integral formulation and within the framework of first strain gradient
theory.

FORCED PROBLEM IN FOURIER SPACE

Substitution of the third of equations (1) into the second and the result into the first
gives the equations governing the average displacement field. These equations of motion
are seen to be three simultaneous Fredholm integro-differential equations of the second
kind. For the case of homogeneous statistics, the integrals appearing in these equations
are of the Faltung type suggesting the possible advantage of giving the equations a Fourier
representation. The result is a set of three simultaneous algebraic equations on the trans­
forms of the components of the average displacement field. This may be written

(iirsAksHu j} = Pi, (3)

where k; denotes the Fourier transform vector and ~denotes the transform of the indicated
quantity.

For isotropic statistics, the coefficient matrix may be expressed by
~ A Z

(~irjskrks) = flkikj+fz k bij , (4)

where 11 and 1z are functions of k alone.
It is a simple matter to invert equations (3), once equations (4) have been introduced.

The result gives

fA.1_(bij_ 11 kikj)~
lUJf - kZ1z 1ZUl +1z) k4 F;.

Equation (5) is essentially the desired solution for any forcing in transformed space.
In the limit of small fluctuations of A(X) and ,u(x) about their mean values it is possible

to obtain explicit expressions for 11 (k) and .!z(k). These expressions, which are given by
equations (50) and (51) of Ref. [I] are reproduced here for future reference.

where

(1 3) 3M 3(y) = ~-3 siny+zCosy,
y y y

(
11 465 1080)' (105 1080)M 7(y) = ---3+-5- smy+ -z--4- cosy,
Y Y Y Y Y

(
1 51 120)' (11 120)M 8(y) = -~+3--5 smy+ - 2+~ cosy
Y Y Y Y Y ,

(7)
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* _ { }_ 2{3A+S/l} { '2(

/l - /l {/l}{A+2/l} /l I·

(S)

In the above, a prime denotes fluctuations of the indicated quantity about its mean value.
The definition of CAir) is

CAfl(r) = {A'(O)/l'(r)}, (9)

and similar expressions are given for CflA and Cfll'" The definitions of A* and /l* are chosen
so that in the limit of k --> O.

(10)

Since k = 0 corresponds to the case in which the average stress and strain fields are homo­
geneous, it is natural to denote this limit as the effective elastic moduli tensor. (For a
detailed discussion of effective constants from a statistical point of view see Beran [9].)

Of particular interest in this investigation is the behavior of11 and 12 in the vicinity
of k = 0; i.e. kl « 1, where I is a characteristic length defined by variations in A(X) and
/l(x). It is the contributions from this region of k space that one hopes to approximate by
the various gradient theories. Expanding 11(k) and 12(k) about k = 0, and retaining two
terms, gives

and

(11 )

where

and

In the above

2 {3A+ lO/l}
{A+2/l}12 = 105{/l} (Jfll'"

(J }.fl = Ioo

rCAir) dr,

(Jflfl = Ioo

rCflfl(r)dr

(12)
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(J1'1' is non-negative. This is true since

<D2(k) = {Xl f" CI'I'(r)eik.rr dr d¢

is non-negative for all values of k including k = O. (J AI' may be positive or negative.
I~ is thus non-negative. Ii may be positive or negative. If (JI'I' > !(JAI'I, however, Ii is also

always positive. For purposes of this paper we shall, for convenience, assume that this
condition is met and that Ii > O. The fact that I~ alone is positive allows us to draw all
the conclusions we arrive at in this paper and choosing Ii to be positive is thus not an
essential restriction. We do note, however, that if (JI'I' = 0 this is not an appropriate
assumption. We exclude this special case from our considerations here and assume
(J1'1' > 0, I~ > O.

The linearized version of the equations of motion of Toupin's strain gradient theory
are presented by Mindlin and Eshel [IOJ as

(1e+2J1)(I-lisV
2)vv.u-(1-ILV2)VxVxu+F = O. (13)

In equation (13), Ie and J1 are the Lame constants while lis and 12s are the two additional
constants required for an isotropic centrosymmetric solid. It is noted by Mindlin and
Eshel that the requirement of positive definiteness of the strain energy density of the strain
gradient theory requires that lis> 0 and I~s > O.

Casting equation (13) into Fourier space and solving the resulting algebraic equations
for U reproduces equation (5) with 11 and12 replaced by liS and12S' where

(]ls+12s) = (A+2J1)(I+li sk
2

),

and

(14)

Thus, we see that the strain gradient solution in Fourier space agrees with the integral
formulation solution in Fourier space in the vicinity of k = 0 provided one can identify
lis = -Ii and I~s = -I~. As we have already pointed out, however, Ii and l~ are positive
numbers. Hence if strain gradient theory is to represent a valid approximation in the
vicinity of k small, then it is necessary to take lis and IL to both be less than zero. This, of
course, violates the requirement of positive definiteness of the strain energy density and
is somewhat unsatisfactory.

Finally, it might be noted that the difficulty of violating the positive definiteness of the
strain energy density is not unique to this problem. Mindlin [IIJ encountered the same
difficulty in forcing the dispersion relations for waves predicted by the strain gradient
theory to agree in the long wave length limit with the exact dispersion relations for a
simple cubic Bravais lattice. His comments regarding this difficulty appear to be in agree­
ment with those made here.

SOLUTION IN PHYSICAL SPACE

In this section we should like to consider the inversion of equation (5) to physical space.
In particular we shall be interested in the fundamental problem of a concentrated force.
We note that for such a forcing field {uJ is a function of k alone and hence the integration
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over the angular coordinates of k may be readily carried out. To this end we note

Jeik.r dk = 4nk sin ~
s '

s r
(15)

where the surface integral is carried over a sphere of radius k. The result of the integration
over angular coordinates gives

(16)

(17)

The indicated integrals can be evaluated by the process of analytic continuation and
contour integration. Without going into excessive details on these well known techniques
we first note that since JI and 1z are even functions of k we may write

2nzu.(r) = F
1m f. 2- e

ikr
dk + IF~-~ f ---~----- _o~(~ikr) dk

I I 2 c fz kr J 2 c .lzU] +.lz)kZ orjorj kr '

where 1m denotes the imaginary part of the indicated quantity and C denotes k ranging
from - 00 to 00. It might be noted that the integrals appearing in (14) will exist only in a
principal value sense. We next view k as a complex variable and extend the definitions ofthe
functions of k for values of k not on the real axis by the process of analytic continuation.
The integrals may now be evaluated by means of residue theory by completing the contour
in the usual manner. Under a suitable assumption regarding the behavior of.II and j~ as
k approaches infinity one can conclude that the appropriate line integrals taken about a
large circle in the upper half-place vanish as the radius of the circle increases without
bound. Thus, such a contour, together with any detour needed to exclude singularities of
the integrands, makes a suitable closing contour. The value of the integral over C is now
determined by the integrals taken over the detours introduced by the singularities. The
integrals taken over detours introduced by pole type singularities are readily obtained by
residue theory. Turning to the specific integrals to be evaluated, both integrands have pole
type singularities at k = 0 plus any singularities introduced by the definitions of11 and.f~.

Strain gradient theory-IZ is positive

Classical elasticity theory gives.ll = I, + j1 and j~ = j1, i.e. two analytic functions of k.
Thus, the only singularities appearing in the integrands of(14) are the pole type singularities
at k = O. Evaluating the residues at k = 0 for this choice of.II andJz allows us to construct
the classical Kelvin solution. This solution contains terms which vary as r - 1 and r- 3

where r denotes the distance from the point of application of the force to the field point.
Turning to the strain gradient approximation with lis and l~s both positive, we can note
two effects. The residue of the second integrand in equations (14) for the singularity at
k = 0 differs from the residue calculated for the classical elasticity approximation. The
second is the introduction of pole type singularities at k = ± illzs for the first integrand
and at k = ± ili is for the second integrand. It is the poles in the upper half-plane which
offer contributions and the most important characteristic of these contributions, from
our point ofview, is that they decay exponentially with distance from the point ofapplication
of the force. The rate of decay is determined by 111ls and 1112s- The actual solution to the



The use of strain gradient theory for analysis of random media 1273

concentrated force problem within the framework of strain gradient theory has already
been presented by Mindlin [12].

Strain gradient theory-l?s negative

Changing the sign of lL and 1~S' which is required if strain gradient theory is to represent
an approximation for the random medium problem, has the effect of changing the value
of the residue at k = 0 and of moving the additional poles from the imaginary k axis to
the real k axis. This second change gives rise to a marked change in the nature of the contri­
bution to the solution that is a result of the presence of these poles. Now the contribution
varies sinusoidally with distance from the point of application of the force. The periods of
spatial oscillations are determined by 11s and 12s' The next question to be answered pertains
to the value of the solution predicted by strain gradient theory with negative lis and l~s'

(As far as the random medium problem is concerned the solution for positive lis and l~s

can have no validity.) It might be expected to give a valid correction to the residue at the
pole at k = O. This is simply because 11 and 12' as predicted by strain gradient theory, is
really a two term expansion of the correctl1 (k) and12(k) about k = 0 while classical elasticity
theory gives only a single term expansion. On the other hand, the contributions from the
singularities at k = ± ill 1s and k = ± il12s must surely be suspect. If 11s and 12s represent a
measure of the spatial variations of A(X) and J.l(x) then the truncation of the expansion of
11(k) and 12(k) after only two terms is valid only for those k which satisfy the inequality
kl 1s « I and klzs « I. The k's which locate these new poles obviously do not satisfy this
inequality.

Second gradient theory

We next consider the value of going to a second gradient theory, the second gradient
theory reproduces equations (5) but now 11 and12 contain k4 terms. Viewed as a small k
expansion of the exact integral theory, the coefficients of the k4 terms can be explicitly
calculated for the medium in which the magnitudes of the fluctuations in A(X) and J.l(x}
are small relative to their mean values. If we consider now the effects of keeping e terms
we come to the following conclusions. First of all, no new modifications are introduced
to the residues for the poles at k = O. Only the values oftheir second derivatives with respect
to k at k = 0 affect these residues. Secondly, the positions of the added poles of first strain
gradient theory are shifted. Finally, additional poles will be introduced. Presumably, the
contributions from these last poles will decay exponentially with distance, r, at a faster
rate than will the exponentially decaying terms of first strain gradient theory. The value
of any of the changes introduced by the second gradient theory is, therefore, questionable
since the shift in position of poles that it predicts is in a region of k space in which truncating
after k4 terms is not valid.

Exact solution

Finally, we should like to turn to the exact expressions for 11(k) and 12(k) as given by
equations (6H9). These expressions are derived for the limit of small perturbations in
X and J.l'. We should like to indicate that the poles defined by the zeroes of12 and 11 +12
cannot be on the real axis. Thus, the contributions to the solution that results from these
poles must decay exponentially with r. The purely oscillatory terms predicted by first
strain gradient theory with negative lis and l~s are, therefore, spurious.
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The form of11 and j~ are such that

11 +.1~ = {Ie + 21l} + g(k),

.12 = {II} +h(k),

where it is expected that

Ig(k)1 « {Ie+21l}

Ih(k)1 « {p}

(18)

(19)

for k real. The reasoning behind this statement is the multiplicative factors of order
{Ie'2}+ and {p'2}+ for g(k) and h(k). By direct calculation we can show the inequalities are
valid for k ~ 0 and k ~ 00. We assume that eAll' ellA and e llll are sufficiently well behaved
to insure validity of the inequality for intermediate value of k on the real axis. If the
inequalities given in equation (19) are satisfied 11 +12 and 12 cannot be zero for real values
of k and therefore there are no oscillatory solutions.

CONCLUSION

In summary, this paper presents an analysis of the ability of the strain gradient theories
to approximate the solution of the problem of a point force in an infinite random medium.
The exact solution was determined from the integral formulation given by equation (I).
It was seen that the exact solution can be subdivided into two parts. The first part has terms
which vary spatially as r- n

, n 2: 1, might be termed the modified Kelvin solution. The
second part has terms which decay exponentially with distance r. This part might be
termed the force layer solution. With this subdivision, it was possible to conclude that
the modification to the Kelvin solution introduced by strain gradient theory with a correct
choice of lis and l~s brings it into agreement with the modification that would be introduced
by the full integral theory. On the other hand, the prediction of strain gradient within the
force layer is completely spurious. Indeed if lis and l~s are chosen so as to bring about the
correct modification of the Kelvin solution, then the attendant force layer solution varies
sinusoidally rather than exponentially. In order to obtain the correct solution using strain
gradient theory it was necessary to give up the positive definiteness of the strain energy
density.

Further, it was shown that going to a higher order gradient theory for which the
additional material parameters are determined by expanding the integral function of the
constitutive equation into an infinite sum of differential functions and then truncating,
offers no improvement to the force layer solutions. An improvement could be achieved in,
say, going to the second gradient theory if the additional constants of second gradient
theory; i.e. additional to those of the first gradient theory; were chosen so as to bring the
locations of those zeroes of12 and 11 + 12' as predicted by second gradient theory, into their
best position. The best position is defined as that position which is closest to the position
of these same zeroes as predicted by the exact 12 and 11 + 12' Since it is the location of
these poles which dominate the behavior in the "thickest" force layer, such a procedure
might allow the region of validity of the second gradient theory to penetrate this layer.
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A6cTpaKT-B pa60Te Hccnep,yeTcH ypaBHeHHH, onpep,enHl{)mHe peaKUHI{) Ha BbIHYJKp,al{)mee none 6ecKoHe­
'1HOH CTaTHCTH'IeCKH OP,HOPOP,HOH Cpep,bl C ManblMH lI>nyKTyal.\HHMH nOCTOHHHbIX ynpyroCTH. 3TH
ypaBHeHHH BblBep,eHbl 3apaHeee hepaHOM H MaK KoHeM. npHBOP,HTCli pemeHHe Jap,a'lH p,JIli cocpeLlOTO­
'1eHHOH CHnbI B 6eCKOHe'lHOH cpep,e. j],aeTCli aLlanH3 LlnH onpeLleJIeHHlI cnoco6HOCTH TeopHH rpaLlHeHTa
p,ell>opMal.\HH nepBoro nHp'lyKH p,nH annpOKCHMal.\HH >Toro pemeHHlI. YKa3bIBeaTClI, 'ITO npHMeHHMoe K
LlaHHoMy cny'lal{) npH6nHJKeHHe '1e'lKO nony'laTb LlnH "MeLlIfeHHoro" H3MeHeHHlI /B npOCTpaHCTBe/ '1aCTH
peweHHlI TonbKO TorLla, KorLla KBaLlpaTbl LlnHH BBeLleHHbl B TeopHIO rpaLlHeHTa lIBJIlIl{)TCli OTpHuaTeLlp­
HblMH p,nll oceCHMMeTpH'IeCKHX MaTepHanOB. 3TO Tpe60BaHHe HapylllaeT Tpe60BaHHe, 'ITO nLlOTHOCTb
3HeprHH Llell>opMaUHH TeopHH rpaLlHeHTa onpeLleneHa nOJIOJKHTeJIbHO. I1cCJIeLlYIOTCli p,aJIblllHe nocnep,CTBHH
Bb160p& 3THX p,nHH, KOTopble OKa3bIBaI{)TCli MHHMbIMH. 06CYJKLlaeTCli TaKJKe BenH'IHHa nepexop,a K TeopHHM
rpaLlHeHTa BblCWHX Hl.\PllYKUr.


